Sourcecode: Example2.c

Sourcecode: Example2.c

] COLLABORATORS
TITLE :
Sourcecode: Example2.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Example2.c iii

Contents

1 Sourcecode: Example2.c 1
L1 Example2.c o e e e e 1

Sourcecode: Example2.c

Chapter 1

Sourcecode: Example2.c

1.1 Example2.c

/***k*k~k*******k‘k*k~k******~k*k‘k~k********k***k*k*************‘k*‘k******/

/ * */
/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC) =/
J*x —mmm e e */
/ * */
/* Manual: AmigaDOS Amiga C Club */
/+ Chapter: Introduction Tulevagen 22 */
/+ File: Example2.c 181 41 LIDINGO */
/+ Author: Anders Bjerin SWEDEN */
/* Date: 93-09-24 */
/* Version: 1.1 */
/ * */
/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/ * x/
/* Registered members may use this program freely in their =/
/ * own commercial/noncommercial programs/articles. */
/ * */

/***/

/* This example demonstrates how to allocate some memory which

/* has to be long word aligned. We will allocate a FileInfoBlock

/* structure in this example, but the procedure of allocating

/+ long word aligned memory is the same for all types of objects.

/* Include the normal dos header file: =/
#include <libraries/dos.h>

/* Include memory definitions: (MEMF_ANY...) */
#include <exec/memory.h>

/+ Now we include the necessary function prototype files:

#include <clib/dos_protos.h> /* General dos functions...
#include <clib/exec_protos.h> /+ System functions...
#include <stdio.h> /+ Std functions [printf()...

#include <stdlib.h> /* Std functions [exit()..

.1

*/
*/
*/
*/

*/
*/
*/
*/
*/

Sourcecode: Example2.c

2/2

/* Set name and version number: */

UBYTE *version = "SVER: AmigaDOS/AmigaDOS/Example2 1.1";
/* Declared our own function(s): =x/
int main(int argc, char *argv[]);

/* The main function: =/

int main(int argc, char *argv[])

{
/* A pointer to our memory which we will allocate: */
struct FileInfoBlock »my_fib_ptr;

/* Allocate some memory. The memory will be long word aligned */
/+ which means that the data will start (and end) on a complete x/
/+ 32-bit address (even word address, on a 4 byte boundary). */

my_fib_ptr = AllocMem(sizeof(struct FileInfoBlock),
MEMF_ANY | MEMF_CLEAR);

/+ Have we successfully allocated the memory? x/

if(my_fib_ptr == NULL)

{
/* Not enough memory! Inform the user and quit: =/
printf("Could not allocate enough memory!\n");

/* Exit with an error code: =/
exit (20);

/* You can now use the memory... =*/
printf ("We have successfully allocated a FileInfoBlock structure!\n"

/+ Deallocate the memory when we do not need it any more: =/
FreeMem(my_fib_ptr, sizeof(struct FileInfoBlock));

/* Remember that you may not use the memory any x/

/+ more after you have deallocated it! */
printf ("The memory has been deallocated!\n");
/*x The End (0 = success): */

exit(0);

)

	Sourcecode: Example2.c
	Example2.c

